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On methods of expressing dissolution rate data 
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*Berk Pharmaceuticals Ltd, Catteshall Lane, Godalming, Surrey and 7 Chelsea College, University of London, 
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The value of the Weibull, logarithmic-logistic, and logarithmic-normal plots in expressing 
dissolution rate data is considered for the combinations of zero and first-order release with 
sink and non-sink conditions. and for actual dissolution rate data of diazepam from tablets 
in a medium of pH 2. 

Dissolution rate studies normally have one of two 
purposes. Gibaldi & Feldman (1967) use them to 
arrive at a kinetic scheme for the overall dissolution 
proass. Other workers have treated the results of 
such studies with one of several distribution func- 
tions to enable the data to be expressed in terms of 
b e  parameters of the chosen function. Recently, 
mgenbucher (1972) used the Weibull function, and 
Wagner (1 969, 1970a,b) the logarithmic-logistic and 
logarithmic-normal functions, in this way, and Khan 
(1975) introduced the concept of dissolution effici- 
ency. We now discuss how information may be 
obtained from these ways of treating kinetic data. 

Table 1 lists the distribution functions and the 
parameters which are related to reaction rates. 

D I S C U S S I O N  
1. Simulated dissolution rate data 
Gibaldi & Feldman (1967) have shown that four 
limiting cases of dissolution kinetics exist. If the 
release process is zero order, the overall order is 0 or 

1 under sink and non-sink conditions respectively; 
under the same conditions with a first order release 
process the overall order is 1 or 2, the kinetics being 
pseudo-first order for sink conditions. We therefore 
considered it useful to see what information the dis- 
tribution functions give for data conforming to 
these limiting conditions. Table 2 sets out this inform- 
ation for zero, first and second-order data corres- 
ponding to k = 0.05 mol litre-' min-l, 0.05 min-l, 
and 0.05 litre mol-l min-l respectively. In all except 
the two limiting cases referred to in Table 1 the 
effect of expressing the kinetic data in terms of a 
distribution function is to distort the original data; 
the values of k and t+ calculated back from the plots 
are incorrect. We conclude that there is no advantage 
in expressing data which conform to these limiting 
cases in the form of a distribution function. 

2. Actual dissolution rate data 
We have studied one set of results, at different 
stirring speeds (22, 50, 60, 76 and 100 rev min-l), 

Table 1. Distribution functions and the significance of their parameters. 

Significance of 

t+ = l n t  when the 
Function Original form Linear transform Limiting cases parameters 

a. -Ina. + plnt(b) In = --Im + pint ordinate is lnln 
Weibu]] (a) F(t) = 1 - e M -  Inln[l -FF(t)l-'= 

for 1st order kinetics 
2 (4.3666). 

Logarithmic- y = k[l - e(a + bt)]-1 

logistic 1-Y 
1 n ( L > =  a. + pt(c) In (2- 1)  = a. + 

for 2nd order kinetics 
Pt t i  = 1nt when the 

ordinate is zero 

\ 

References: (a) Weibull(l951); (b) Kao (1959); (c) Berkson (1963); (d-f) Wagner (1969,1970ah); k) Croxton& 

Note: A. and At are concentrations at t = 0, t = t respectively. 
a Correspondence. 

hwden (1956). 

Standard deviation 
(0) correlates with 
time-scale of reac- 
tion. Mean(m) gives 
an estimate of t i  
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Table 2. Information obtained from distribution 
function and standard rate plots for single zero-, first- 
and second-order processes. 

Scale 
Type parameter Shape 

plot Order k l n t  = 0 u ti(min) plot 
of l n n a t  of 

W 0 (0.0513) -2,970 - 9.51 Concave 
upwards 

LL 0 (0.0526) -2,945 - 9.65 Concave 
upwards 

LN 0 - - 0.2778 9.21 Negatively 
skewed 

S 0 0.05 - - 10.00 Linear- 
W 1 0.05 -2.996 - 13.92 Linear 
LL 1 (0.0513) -2.970 - 13.92 Concave 

upwards 
LN 1 - - 0,4476 14.47 Negatively 

skewed 
S 1 0.05 - - 13.86 Linear 
W 2 10.0488) -3.021 - 20.39 Concave 

downwards 
LL 2 0.05 -2.996 - 19.90 Linear 
LN 2 - - 0.5062 17.63 Negatively 

skewed s 2 0.05 - - 20.00 Linear 

downwards 
LL 2 0.05 -2.996 - 19.90 Linear 
LN 2 - - 0.5062 17 63 Negatively 

skewed s 2 0.05 - - 20.00 Linear 

Key to type of  plot: W = Weibull. LL = Logarithmic-logistic. 
LN = Logarithmic-normal. S = Standard. 

which are representative of many dissolution rate 
profiles of diazepam (Atensine, Berk) tablets, in a 
medium of pH 2. The method of obtaining the dis- 
solution rate data has been described (Randall & 
Goldsmith, 1975). 
(a) The Weibull and logarithmic-logistic plots. 
Table 3 shows that both plots can be used to reduce 
such data to linear form, the correlation coefficients 
being close to unity and the standard error of estim- 
ate being low. The shape parameter, p, of the Weibull 
plot is near 2 in all cases, corresponding to the sig- 
moid shape observed for the actual plots of cumul- 
ative fraction dissolved against time (Kao, 1959). tt 
is estimated both from the actual Weibull and log- 
arithmic-logistic plots; in all cases the best straight 
line gives the higher estimate of tt, corresponding to 
the negative deviation from linearity of both plots 
when dissolution nears completion. 

The actual logarithmic-logistic plot gave the most 
accurate estimate of th. 
(b) The logarithmic-normal plot. Table 4 shows that 
this plot gives a fairly satisfactory representation of 
the data. The standard deviations decrease with 
increasing stirring rate, corresponding to the shorter 
time-scale. The dissolution rate plots calculated from 
the logarithmic-normal distribution agree quite 
closely with the observed plots near the middle of 
the reaction, but tend to under-estimate the cumul- 
ative fraction dissolved near both the beginning and 
the end of the reaction. 
(c) The concept of dissolution efficiency (DE). This 
has been suggested (Khan, 1975) as a means of con- 
veying information about dissolution rate profile.; 
the DE is defined as the ratio of the area under the 
dissolution rate curve, between t = 0, t = t, to the 
area of the rectangle bounded by these time Ordin. 
ates and by x = 0, x = 100% where x is the cumul, 
ative fraction dissolved. We evaluated the dissolution 
efficiency after 25 min (DE25) for five Sets of dis. 
solution rate data on the diazepam tablets, with 
stirring speeds of 50, 60, 76 and 100 rev min-1; at 
22 rev min-I the fraction dissolved after 25 min was 
about 70 %, whereas Khan recommends that, for 
this approach to be adopted, a time should be taken 
at which x is greater than 90%. For stirring speeds 
of 50, 60, 76 and 100 rev min-', DE25 is 67.8 5 0.2, 
75.1 f 0.1 , 76.6 & 0.1, and 79-4 0*3%, respec- 
tively. This, therefore increases with stirring rate as 
expected. This is the least informative way, of those 
studied here, of expressing dissolution rate data, 
since it gives no information about the shape of the 
curve; Khan, indeed, anticipates this criticism, since 
he suggests using DE in conjunction with tZo, ta, and 
t,,%; but the shape of the curve is then reasonably 
well specified and one sees little advantage in adding 
the DE to this information, particularly if it is to be 
obtained by the time-consuming process of cutting- 
out and weighing. 

Table 3. Parameters of the Weibull and logarithmic-logistic plots for dissolution of diazepam from tablets. 

Dissolution Weibull best straight line Actual Logarithmic-logistic best straight line Actua' plot 
rate plot 
data 

Stirrer Scale factor Scale factor 
speed (ordinate Slope (ordinate Slope 

min-1 min t = 0) parameter) sx,y r 2 n  mln t = 0) parameter) sx, y r m n  
at In (shape t$ a t l n  (shape t! 9 rev t ? 

1074 

60 5 4  -4.2196 2.0532 0.1145 0.98 6.53 5.10 -4,4618 2.5614 0,1406 0.99 5.71 ::$ 
22 11.2 -5.0314 1.8595 0.1555 0.98 12.28 11.52 -5.1613 2,0738 0.0574 0.99 
50 7.0 -4.4475 1.9566 0.1421 0.96 8.05 7.21 -4.7505 2.3934 0.0090 1.00 696 

76 4.9 -3.6024 1.8023 0,1034 0.98 6.02 4.76 -4,0778 2.4416 0.0770 0.99 
100 4.2 -3.1663 1.6637 0,1074 0.98 5.38 4.36 -3.4925 2.2511 0,1273 0.98 ::% 414 

* Sx, y is the standard error of estimate; it gives a measure of the range above and below the calculated best straight line within which 

I? is the coefficient of  correction. 
o f  the items may be expected to fall if the scatter is normal. 
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Table 4. Parameters of the logarithmic-normal distri- 
butions for dissolution of diazepam from tablets, and 
calculated and observed dissolution times for  specified 
p e l i o n s  of the reaction. - 

Pear- 
son 

skew- Calc. Y, Observed 
5s Mean u ness 20 50 80 20 50 80 

32 0.8807 0.2603 -1.82 5.66 10.68 - 5.4 11.20 - 
0,7944 0 2438 -1.04 4.22 6.95 12.98 4.0 7.00 12.93 zg 0.6966 02123 i 0 . 0 4  3.42 5.45 9.68 3.4 5.40 8.43 

76 0,6577 0.2123 -0.54 3.25 5.15 8.72 3.14 4.90 8.0 
0.6159 0.2015 -0.57 2.98 4.52 8.14 3.14 4.20 7.2 

c 

ss = stirring speed (rev min-'). 
pearson skewness, Sk (log), as applied to a log-normal curve, is 

~~ 

defined as 
logQ1 +logQ'  -210gQPwhereQ,,Q,,Q,aretheordinates Sk(log) = log Q. - log Ql 

Corresponding to the lower and upper quartiles and the mean, respec- 
lively. The curve may be considered as log-normal if Sk(log) <0.15. 

CONCLUSION 

plots of cumulative fraction of sample dissolved 
against time can be described by the Weibull or 
logarithmic-logistic plots, using their scale factors 
and slopes as parameters, or by a logarithmic- 
normal plot, using the mean and standard deviation 

parameters. This applies both to the dissolution 
rate data observed for diazepam from tablets in a 
medium of pH 2, and to the data which we have 
constructed for overall zero-, first- and second-order 
kinetics. 

All three methods give estimates of tt; a smooth 
curve drawn through the points in the Weibull or 
logarithmic-logistic plot leads to a better estimate of 
tt than does the best straight line through the points. 

This is due to the marked negative deviation from 
linearity found in both plots as the reaction nears 
completion. 

With two exceptions, these plots give no inform- 
ation about the kinetics of the process; these excep- 
tions are the Weibull plot for overall first-order 
kinetics and the logarithmic-logistic plot for second- 
order kinetics. 

In both cases the slope of the line is unity and the 
rate constant is the antilogarithm of the intercept at  
log (or In) t = 0. These situations arise because in 
each case the appropriate plot is simply a log-log 
plot of the standard expression for first or second 
order kinetics. 

Although all three methods provide represent- 
ations of disolution rate curves in terms of para- 
meters related to the time-scale of the process, it 
seems to us unnecessary to treat dissolution rate data 
in such ways. Firstly, the additional work involved 
in such calculations does not lead to any fresh 
information and, in fact, as Tables 2, 3 and 4 show, 
slightly distorts the experimental results. It may be 
argued that the parameters of these plots provide a 
useful short description of the dissolution rate curves, 
but, in our opinion, such a description could equally 
well be provided in terms of the times at which 
specified fractions of the material are found to be 
dissolved. 
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